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We present an analytic model for virtual pion Compton scattering. Using factoriza- 
tion of the Regge residues we predict the scale-invariant electroproduction structure 
functions for e-~r ~ e -X,  and obtain results for the pion form factor that compare well 
with the data. By fitting recent data from CEA and the SLAC-LBL-SPEAR collabora- 
tion for the ratio R = cr(e+e - -~ hadrons)/o(e+e - -~ #+t~-), and for the mean multiplicity of 
charged pions, we obtain predictions for the inclusive proeess e+e - -~ ~r-X. In particu- 
lar, the predicted End3e/dp 3 for the inclusive process e+e - -~ *r-X shows a strong dif- 
fractive type of behaviour with a slope for x/q 2 ~ 4.8 GeV approximately the same as 
in pp ~ *r-X. The ratio R is predicted to rise linearly versus x/q 2 until some high energy, 
beyond which it tends to a constant, while the multiplicity remains essentially constant. 
The mechanism in the model that produces these predictions is the build-up or "statis- 
tical bootstrapping" of meson resonances in the direct (or missing mass) s-channel. 

I. Introduction 

Recent  exper iments  [1, 2] have revealed that  up to a total  c.m. energy o f  5 GeV,  

the total  cross section for  the process e + + e -  ~ hadrons  may  be falling more  slowly 

with increasing energy than ou+u- , the point- l ike cross section for e + + e -  ~ / a  + + / a - .  

This behaviour  is already in conf l ic t  wi th  the general ized vec tor  dominance  model  

[3], which predicts  that  R ( q  2) = Otot(q2)/ou+u-(q 2) "~ const,  for  modera te  values 

o f  q2,  as is required to explain the early onset  o f  scale invariance of  the nucleon 

e lec t roproduc t ion  s tructure funct ion .  
Fur thermore ,  the new data have inspired a reexamina t ion  o f  the par ton (or  

quark)  models  [4] which, in their  simplest  forms,  predic t  that  R ( q  2) "~ const, for  

asympto t ic  values o f  q2.  I t  has been suggested [5] that  the annihi lat ion data have 

no t  ye t  reached their  scale-invariant l imit ,  so that  the simple par ton  mode l  is no t  
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valid at q2 = 25 GeV 2, and requires modification for finite q2. Of course, we are 
still left with the fundamental question of why the quarks or partons have not yet 
been observed. 

In this paper, we study electron-positron annihilation into pions by extending a 
model for the nucleon Compton amplitude [6] to the case of pion Compton scatter- 
ing. The model satisfies the following fundamental requirements: (a) Mandelstam 
analyticity, (b) crossing symmetry, (c) scale invariance in the limit Iq21 ~ ~o, 
(d) Regge behaviour in all channels, (e) resonance poles in the unphysical sheet, 
(f) generalized vector meson dominance (i.e. the model contains cuts in q2 as well 
as poles in the second sheet of the q2 plane), (g) SU(3) structure of the currents. 

In sect. 2, crossing symmetry and isospin invariance are used to obtain the form 
of the amplitude, and a model analogous to the nucleon Compton amplitude in 
ref. [6] is obtained. The analytically continued form of the amplitude is derived in 
the annihilation region. We implement factorization of the pomeron and P'  residues 
in the Regge limit in sect. 3. By requiring that the threshold behaviour of the scale- 
invariant electroproduction structure function be smooth in our model, a prediction 
is obtained for the structure function. The pion form factor is then predicted with 
the help of the Bloom-Gilman sum rule [7-8]  and compared with recent data. In 
sect. 4, we formulate inclusive sum rules to obtain the total cross section and mean 
multiplicity of pions produced in e+e - annihilation in terms of the cross section for 
e + + e -  -~ rr + X. In sect. 5, we discuss the results obtained from fitting the total 
cross section and mean multiplicity. With the scale invariance breaking behaviour of 
the model thus determined, we are able to make predictions for the annihilation 
structure function, and the inclusive pion production cross sections for finite values 
of q2. In sect. 6, we end with some concluding remarks about our results. 

2. Analytic model 

Following reL [6], we deffme the double helicity-flip amplitude for pion Comp- 
ton scattering by 

T~(s, t, q2, q~) = _ ( q l  . q2)A(s  ' t, q2, q2) + B(s,  t, q2, q2) , (2.1) 

where we assume that A satisfies a Mandelstam representation and B is the Born 
term. The amplitude A can be written as a sum of contributions from isovector 
(i = 3) and isoscalar (i = 8) photons 

A =A33 +~33A38 1 A83 +  As8. (2.2) 

The amplitudes A i / m a y  be decomposed into amplitudes of  definite isospin/, de- 
noted by A/ .  We write 
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I _  I 1 Aij  - + ( 2 . 3 )  

where Fis  the non-diffractive contribution and P is the pomeron contribution. 
For the isovector-isovector amplitude A33 , we require that the exotic 1 = 2 am- 

plitudes must contain no s, t and u poles in the s, t and u channels, respectively. For 
example, in the s-channel: 

F23(s, t, u) = F33(u, t ) .  (2.4) 

This function F33(x, y) has poles in both x andy,  but is not symmetric in these 
variables. Thus F33(s, t) has resonances lying on the exchange-degenerate p - P ' -  
A2-6o trajectory in the s- and t-channels (we have omitted ql 2 and q2 for conve- 
nience). We further require that no pole occur more than once in the amplitudes. 
To satisfy these assumptions and s - u  crossing symmetry we are led, using crossing 
relations, to the following form: 

F13(s, t, u) = F33(s, t ) ,  (2.5) 

FO3(s, t, u) = -~F33(u,  t) + ~F33(s, t ) .  (2.6) 

To discuss the pomeron amplitude, we introduce the function Ap( t ,  s) which has 
a pomeron exchanged in the t-channel and no s-channel resonances. By requiring 
that the pomeron be exchanged only in the t-channel and that the Pomeranchuk 
theorem be satisfied, we obtain 

P 2 3 3 ( s , t , u ) = P 1 3 ( s , t , u ) = P O 3 ( s , t , u ) = A 3 p 3 ( t , s ) + A 3 3 ( t , u  ) . (2.7) 

For A 88, we have that 

F18(s, t, u) = F88(s, t) + F88(u, t ) ,  (2.8) 

Pls(s ,  t, u)  = A Sp8(t, s) + A 88(t,  u) . (2.9) 

Neither the pomeron nor any of the leading non-diffractive t-channel exchanges 
can contribute to the amplitudes A38 and A83. Although the s-channel exchanges 
cannot be ruled out so easily, we have investigated the effects of  "non-diagonal" 
terms, such as A38 , and find that their inclusion does not alter our results. 

The various pion Compton amplitudes are now given by 

A (7r±3 , --" rr±~/) = i 1 2 t 1 i(A33+A33) + 3Ass 

= l(F33(s, t)+F33(u, t)) + A3p3(t, s) + A3p3(t, u) 

+ ](F88(s,t)+FSS(u,t)+ASpS(t,s)+A88(t,u)), (2.10) 
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1 0 2 2 1 1 A (n07--> 7r07)= 5A33 + ~A33 + 5A88 

= A (rri~ -+ lri~'). 

The construction of the pomeron and non-diffractive amplitudes is analogous to 
the nucleon-photon case, discussed in ref. [6]. We have 

A~i(t, s, q2, q2) = 7ff(t)l n [l +(1 -w' )~  ] 

X Wp(6O') aP(t)- 2 ~r(q2, q2)Di(q2)Di(q2), (i = 3 ,8 ) ,  (2.12) 

Fii(s, t, ql  2, q~) = - [7ii(w') F(1 -o t ( s ) )wp( t )% (s) 

+ ~/,/(t) r ( 2 - % ( t ) )  w e , ( . ) ' )  ap(t)- 2 cjr(q2, q~)] 

X Di(q21)Di(q~ ) + ~(satellites),  (i = 3, 8) .  (2.13) 

Here, the variable co' is defined by 

¢0'= I + XlX2(S-St)  , (2.14) 

where 

xi= [a+(q2-q2i)~] - I  , ( i= 1, 2).  (2.15) 

The elastic threshold is given by 

s t = 4 m ~ ,  (2.16) 

whereas qt and a are given by 

qt = 0.99 GeV/c ,  a = 0.12 GeV/c.  (2.17) 

The vector meson propagators D3(q2 ) and Ds(q2 ) are the same as in ref. [6], and 
the 5 r function is given by 

~r(q2, q~)= 1 + f ( q 2 ) f ( q ~ ) ,  (2.18) 

where 

c q 2 ( m L - q 2 )  
/ (q2) = (2.19) 

[a+(q2_q2)~ ] n '  

with c = 4.1 (GeV/c) 2 and n -- 6. 
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and we see from (2.25) that the direct channel resonance terms ultimately vanish for 
s ~ ~,  because a ( -  +~) = -const .  (this will happen at very large s values). 

In the kinematic region where the direct channel resonance terms may be neglect- 
ed, the structure functions for inelastic electroproduction off pions are given by 

vW~(v, q2) = vwP(v, q2) + vwP'(v, q2), (2.27) 

where we have included only the dominant P and P' exchanges, and 

vwP(v, q2) = - q  2v ~r(q2, q2) [3,33 [D3(q2)12 + .~,~88 [D8(q2)12 ] 
ff 

X {½ ln(6o')sin ~bp(6o') - tan -1 [(6o'- 1)~] cos ~bp(6o')} IWp(6o')1-1 , (2.28) 

vW~'(v, q2) _ q2~(~)  5r(q 2, q2) [~ 3~3,3 [D3(q2)]2 

+ 178, 8 [Ds(q2)]2 ] sin (~ ¢p,(6o'))I Wp,(6o')I-I • (2.29) 

Here, we have neglected the satellite terms in (2.13) and defined u = (s-u)/4ra~r, 
and 

t 1 

~Ci(6o-1)~ ~ 
~bi(6o' ) = tan -1 \ A i Bi6o ] + , , (i = P, P') (2.30) 

In the scale invariance limit _q2 -~ ~ 6o - -2mrrv/q 2 fixed, we have 

v W~(v, q 2) ~ F~(6o) = F~(6o) + FP'(6O), (2.31) 

where 

F2P(6o) = 7p6o (~ in (6o) sin ~(6o) - tan-  1 [(6o _ 1)~ ] cos ~p(6o)} I wp(6o) I- 1 , 
(2.32) 

F~'(6O) = -~'p, 6o sin(~C~p,(6o))lWp,(6o)l-} • (2.33) 

We have defined 

33+I.,,88 
71" ~ ' r  1"(23-) r l .  33 ~- 1.88"~ (2.34) 

~'P = 2rrm ' 3'p, = 2rim ~ r p ,  ~ ~rp,J .  
I t  I t  

To obtain the structure function W~, we assume that the CaUan-Gross relation 
holds: 
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W~(v, q2) = (_v2/q2) W~(v, q2). 
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(2.35) 

To treat electron-positron annihilation, we write the cross section for 
e+(k) + e-(k ' )  ~ It(p) + hadrons in terms of the annihilation structure functions 
W]r and W~r: 

d2° (2~2]cm2v i  (1 q 2  

X [2 Wl~(V ' q2) +__~_L (1 _ ~ ) 2 m v  vW~(v'q2) s i n 2 0 ] , 2 m r :  (2.36) 

where q = k + k', v = p . q]mrr , 0 is the barycentric frame scattering angle and E~r is 
the energy of the detected pion. 

Our model has the virtue that, because it is analytic in s, q2 and q2, it may be 
continued to the annihilation region by using the method described in II: 

27riW~(v, q2) = T~(s+ie, O, q2+ie', q2- ie")  

2 , Fr - T~(s - ie ,  O, q2+ie ', q - re  ) .  (2.37) 

Here, s is given by 

s = (_p+q)2 = m 2 _ ~r +q2 2mr v1>m 2 (2.38) 

By evaluating the discontinuity in (2.37), we get 

v~(u, q2) = v~P(v, q2) + vW~'(u, q2) +/~(v, q2), (2.39) 

where vW~_and pW2 P' are given by the fight-hand sides of (2.28) and (2.29), respec- 
tively, and R is the contribution from the direct channel resonance term in (2.13). 
It is understood that, in (2.37), q2 and q22 are continued above and below their re- 
spective cuts, so that in (2.39) [6]: 

$ - - S  t 
' (2.40) c o = l ÷  

a 2 + q2 _ q2 ' 

c2q4(m2-q2)  2 
~r(q2, q2)= 1 + (a2+q2_q~6 , (2.41) 
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2 2 2 -1 [D3(q2)]2 = [ (q2_m2)2 + p3(q _4mZ)] . 

The resonance term R is given by 

/~(v, q2) = q 2v Im ((½ T33(oJ) [D3(q2)]2 
7r 

(2.42) 

+ 1788(60' ) [Ds(q2)]2 ) r (1  -%(s))}. 
In evaluating the residue function in (2.43), we use 

(2.43) 

(~'= 1 + S--St (2.44) 
a2+q2-s  t 

in the annihilation region. 
The scaling variable w for annihilation is defined by 

2rn v m 2 -  s 
6o = q2 = 1 + q2 " (2.45) 

In the scale invariance limit q2 ~ 0% co fixed, we get 

vW~(v, q 2 ) ~  ff~r(w)= (2--~-w) F2r(2-6~) ' (2.46) 

where F~ r is given by (2.31). We have used (2.25) to neglect the resonance term 
/~(v, q2) in the scale invariance limit s ~ oo. 

According to the Callan-Gross relation (2.35), we have 

~]r(v ' q2) = - v 2  W~(v, q2) (2.47) 
q2 

and 

ff~r(~) = -(.oP~'((.o). (2.48) 

3. Factorization and the pion form factor 

Factorization of the Regge residues provides a constraint on the pion structure 
functions in the Regge region [8] *. We assume that the pomeron and P '  residues 

* It should be noted that if we perform a Mellin transform of the pomeron amplitude term in 
(2.12) then, due to the logarithmic factor, the leading singularity in the angular momentum 
plane will be a dipole ~. 1/(J-c~(t)) 2, so that factorization of the pomeron is not strictly 
valid. But we shall assume, nevertheless, that we can factorize the pomeron residue. 
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for Compton scattering factorize for all values o fq  2 in the limit s ~ oo. Defining the 
transverse photoabsorption cross section by 

4rr 2 ot W~r(v, q 2) 

OT(S ' q2) - v+q2/2mTr , (3.1) 

we obtain for the pomeron contribution in the Regge limit, 

oP(s, q2)Tr = 31~(q2). 

Here, 31~(q 2) is given by 

3n~ 2 ~, n20l p(q  ) =._~_ ( i B p i X l X 2 ) - I  ~(q2, q2) 

(3.2) 

X (733 [D3(q2)]2 + ~3'p 88 [D8(q2)]2]" • (3.3) 

In the 7P scattering case a similar result is obtained, 

oP(s, q 2)p = 3p(q 2), (3.4) 

except that m~r is replaced by the nucleon mass M and 733 and 788 are the residues 
for nucleon Compton scattering. Factorization means that [8] 

3~(q2)3p(.N) 
~ ( q 2 ) =  ~p(NN) (3.5) 

where 3p(~rN) and 3p(NN) are the pomeron residues for rrN and NN scattering, re- 
spectively. Therefore, we have from (3.3): 

ii [ m,r ~ 3p(TrN) (i = 3, 8). (3.6) 

Similarly, we get for the P' contribution 

~733(71r) = ! 33 2 337  (__~_)/3p,(rrN) 
[a71o(7P) + 372o( P)] /3p,(NN) ' 

( _ ~ )  #p,(rrN) 
7g'8(77r) = 788(7P) 3p,(NN) " 

(3.7) 

The nucleon Compton residues are given in I as [6]: 
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3'33(3'p) : 0.883 GeV, 

3'p88(3'p) = 0.357 GeV, 

7~3(7p) + 27323(7p) = 5.12 GeV, 

788(7p) = 0.669 GeV, (3.8) 

and the residues flp, p,0rN) and flp, p,(NN) read [8, 10] 

flv(~N) = 20.1 mb,  flw0rN) = 19.8 mb,  

flp(NN) = 35.6 mb,  flp,(NN) = 44.3 mb.  (3.9) 

Therefore, our pion Compton residues are determined to be 

3 '33 = 0.074 GeV, 73,3 = 0.228 GeV, 

3'88 = 0.030 GeV, 3'8,8 = 0.045 GeV, (3.10) 

and the residues 3'p and 3'p,, defined in (2.34), have the values 

3'p = 0.096, 3'p, = 0.13. (3.11) 

The scale-invariant structure function F~ r defined in (2.31) is now determined, 
except for the parameters Ap, Cp, Ap, and Cp,, which control the threshold behav- 
iour of the structure function for co-* 1. We have found that F~2(co ) has smooth 
threshold behaviour if 

Ap = 1.0001, Ap, = 1.94, 

Cp = 0.52, CI,, = 1.94. (3.12) 

This is shown in fig. 1, where we plot F~(co) versus co. 
Having obtained the scale-invariant structure function, we may use the Bloom- 

Gilman sum rule [7, 8] 

[F (q2)l 2 = f l+(w~-m~)/(-q2)  F~(co)dco, (3.13) 

1 

to predict the pion form factor F~r(q2). There is some freedom in the choice of the 
upper limit for the integration in (3.13), although it should not include too much 
contribution from the higher resonances. With the value ~ = 1.7 GeV 2, we obtain 
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Fig. 2. The pion form factor Fn(q2),  obtained from the Bloom-Gilman sum rule, is shown as a 
solid line. The data are taken from ref. [11]. 
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the prediction for the pion form factor shown in fig. 2 along with recent data * 
Since (3.13) is not expected to be valid as _q2 -+ 0 (in fact, it diverges as _q2 ~ 0 
in our model), we show our prediction for _q2 > 0.4 (GeV/c) 2. Our model repro- 
duces well both the magnitude and shape of the pion form factor, which lends sup- 
port to our use of  factorization to obtain the scale-invariant pion structure function. 

4. A sum rule for the multiplicity 

In the annihilation region, our model deals with the one-particle inclusive pro- 
cess e + + e -  -> n + hadrons in the one-photon-exchange approximation. To treat 
the totally inclusive process e + + e -  ~ hadrons, we make use of  two inclusive sum 
rules 

f f  d2° d ~  dE = (n r) Otot(q2), (4.1) 

and 

d2o c 
~c f f d~2dEc Ec dl2dEc : X~q 2 Otot(q2). (4.2) 

In (4.1), (n n) is the mean multiplicity of  the given pion. The sum rule (4.2) is a con- 
sequence of  energy conservation, and the sum is over all species of  hadrons which 
could be produced in electron-positron collisions. We expect that production of  
kaons, nucleons, etc., should amount to less than 10% of  the production of  pions, 
so that we may restrict the sum in (4.2) to pions. Furthermore, in our model the rr +, 
~r- and lr ° production cross sections are equal, so that (4.2) may be written 

3 f f  d2° dJ ~ Ed~2dE = V/~-q 20tot(q2) .  (4.3) 

The mean multiplicity is then obtained by combining (4.1) and (4.3): 

. ~/~--~ : :  d2o 
v~ j j  ~ dS2dE 

(n,n.) = (4.4) 
££  d2o 

• UJ ~ gd~dg  

In the scale-invariant limit q2 ~ ~,  we get 

1 

2 2fm-/~q2 ¢°ffl(W)dw 

(n~r) = 3 1 (4.5) 

2fm./,ffq ~ ~2~v 1 (w) d~ 

• The data are taken from the review article by Berkelman [ 11 ]. 
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5. Results for e+e- annihilation 

The recent experimental results obtained by the SLAC-LBL-SPEAR group [2], 
have certain remarkable features. The inclusive differential cross section E,d3u/d3p, 
is similar to an analogous distribution for pp + rrX at 90” observed at NAL [ 121 *. 
Measurements of a(e’e- + hadrons) in the range 16 to 25 GeV2, which have been 
made at CEA and SLAC, are consistent with a constant or slowly falling cross sec- 
tion in this range of q2. Moreover, the ratio R = a(e+e- + hadrons)/a(e+e- + p’p-) 

conflicts with the predictions of the parton model, current algebra and asymptoti- 
cally free non-Abelian gauge theories. 

It has been suggested [ 131 that there may exist a lepton-hadron interaction which 
produces these unexpected results, but such a suggestion may conflict with quantum 
electrodynamics. 

We shall explain the SLAC results in our model by observing that the missing 
mass channel resonances (p, w, 9, etc. . . ) build up in a “statistical bootstrap” way 

to give a diffractive-type of scattering similar to that found in hadronic pp colli- 
sions. The mechanism for this is already contained in our model in the term 
R(v, q2), in eqs. (2.39) and (2.43), which was taken to be negligible in our previous 
work [6] on e+ + e- + l? + X, due to the meagre production of baryon resonances 
in the missing mass channel (this latter assumption is, of course, subject to experi- 
mental verification). 

To treat utot and (n,>, we employ the sum rules (4.1) and (4.3). From the Cal- 
lan-Gross relation (2.47), we see that the inclusive cross section (2.36) deperids only 
on vv2(o, q2). Our model for vv2(v, q2) is given by (2.39) with vv:?I$ andR 
given by (2.28), (2.29) and (2.43), respectively. The terms vw: and vFt$’ have been 
fixed by the discussion of sect. 3, so that only R may be varied to fit utot and (n,). 

We choose A and A large, so that the factor involving A and m in (2.22) may be 
replaced by 1 at moderate values of s. Then a is fixed by choosing values for n, k, 

g1 andg2 in (2.22) and (2.23). The parameter k sets the normalization of the cross 
section, n controls the energy dependence of the cross section through (2.26), and 
g1 andg2 are important for the o-dependence of vw2, and hence, via (4.4), for the 
multiplicity. Only by simultaneously fitting both utot and (n,) can n, k, g1 and g2 
all be determined. 

By choosing n = 4, k = 1.68 X 106, gl = 13.0 and g2 = 0.1, we obtain u(e+e- + 
hadrons) shown in fig. 3 and compare it with the world’s data [ 141. In fig. 4 we 
compare our result for R = u(e*e- + hadrons)/u(e+e- + p+p-) with the CEA and 
Frascati data. Since w’ + w in the scale invariance limit, we see that scale invariance 
of R is broken by the factor involving A and m in (2.22), and by the factor @ 
coming from (2.26) when n = f . Hence, the ratio R will rise linearly versus @ un- 
til q2 is of the order of either A or Ap (the parameter which determines the asymp- 
totic regime of the p trajectory [6]), whichever is smaller. Since m is large i? will 

* Note that at 90”, p and pl are equaL 
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Fig. 4. The  resu l t ing  ra t io  R = o ( e+e  - ~ h a ~ o n n s ) / o ( e + e  - --* ~ + ~ - )  is d i sp layed  as a sol id  l ine 
against the data. No te  the l inear increase in ~/q2. 



J. I4/. M o f f a t  e t  aL / e  + e - a n n i h i l a t i o n  475 

4 

<no> 3 

2 

6 D 

5 - -  

/ 

i - -  

l I I I I 1 I 

J 

• CEA 

o # T r  GROUP (FRASCATI) 

0 I J I I I I I 
2 3 4 5 6 7 8 9 

(GeV) 

Fig. 5. Our fit to the multiplicity (n c) for the production of charged pions, plotted against ~ q 2  
and compared with the data (refs. [1, 15]). 
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Fig. 6. The predicted angular distribution do/dl2 v e r s u s  0 for ~q2=  4.8 and 10 GeV. 
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~ 7. The predicted q2do/dx for e+e - -* lrc + had,tons plotted versus x = 2E /~ -q  2 for 
= 3.0, 3.8, 4.8 and ]0  GeY, and showing a marked breaking of  scaling f o r x  ~ 0.5. The 

dashed part of the curve for ~/q2 = 3.0 GeV corresponds to s < 5 GeV 2. 

vanish as q2 --> ~, and R will eventually tend to the value 1.45 X 10 -3 , given by the 
scale-invariant P and P' terms. The P and P' terms become scale-invariant at rela- 
tively low values of q2; for example, at q2 = 25 GeV 2 they contribute 0.03% to 
R = 5.89. 

Our fit to the multiplicity (n c) for the production of charged pions is shown in 
fig. 5 and compared with CEA and Frascati data [ 1, 15]. The multiplicity is pre- 
dicted to rise slowly versus x / ~  and then tend to the value 2.26 given by (4.5) as 
X /~  -~ ~. We observe from eq. (4.4) that this prediction depends only on the shape 
of the structure functions. We also note that the asymptotic values (n c) = 2.26 and 
R = 1.45 X 10 -3 constitute predictions determined by the discussion of sect. 3, and 
completely independent of the form R. 

Having fixed the parameters in our model, we can now examine the inclusive 
cross section. In fig. 6, we display the predicted angular distribution do/d~2 and we 
see that it is fairly fiat between 45 ° and 135 ° . By integrating the cross section 
q2d2o~r/d[2dx for the inclusive reaction e+e - ~ rr-X over all angles we obtain the 
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Fig. 8. Our prediction for E d3a/dp 3 at 90 ° for e+e - --* zr- + hadrons, plotted on a logarithmic 
scale versusp at x /~  = 3.0, 3.8, 4.8 and 10 GeV. 

predictions shown in fig. 7, plotted versus x = 2 E / v ~  for V ~  = 3.0, 3.8, 4.8 and 
10 GeV. We see that there is a marked breaking of  scaling in fig. 7 for x ~< 0.5. 

In fig. 8, we show our results for E ~  d 3 o / d p  3. The predicted slope is approxi- 
mately the same at 90 ° as in the process pp ~ ~r-X measured at NAL [12] when 
X / ~  = 4.8 GeV. 

Finally, in fig. 9, we display the predicted annihilation structure function 2m~ W1 'r, 
plotted versus co for x / ~  = 4.8 and 10 GeV. Again we observe the strong scale-break- 
ing effects around co ~ 0.2. 

It should be mentioned at this point that we do not expect our small q2 predic- 
tions to be accurate, because we have not, as yet, treated the resonance pole contri- 
butions correctly for q2 ~ 5 GeV 2. 

If  the QED inequality [9] 

°t f R(q2) dq 2 <  1 (5.1) 
31rJ  q2 
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Fig. 9. Predicted annihilation structure function 2rnlr W1 plotted versus to for ~ = 4.8 and 
10 GeV. Note the strong scale-breaking around to = 0.2. 

is to hold, we find that the behaviour of  R predicted in fig. 4 may continue up to 
x / ~  ~ 550 GeV. As discussed above, the extent  to which this behaviour may con- 
tinue is controlled by the parameters A and Ap, and without a knowledge of  their 
values we cannot say whether the bound (5.1) is satisfied or violated in our model. 

It is important  to recognize that all our results are based on the one-photon ex- 
change approximation.  

6. Discussion of results 

From our unified description of  current-hadronic processes in I and II and in the 
present work, we have succeeded in fitting a remarkable amount  of  data. Our re- 
suits for e+e - -* rrX are consistent with the CEA-SLAC data and have their origin in 
a simple physical mechanism, namely, the build-up of  resonances in the multi-pion 
missing mass channel. One can only expect  to get detailed predictions, as we have ob- 
tained, from a model which contains a great deal of  information about the dynamics 
of  the interactions; such a model can be found by using S-matrix methods based on 
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well.founded physical properties, such as analyticity, crossing symmetry, Regge be- 
haviour, vector-meson dominance, etc. It is too early to say what connection, if any, 
a physical description of this kind has with the constituent picture of the hadrons. 

We thank Dr. I.O. Moen for a helpful and stimulating discussion. 
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